Understand Sequential API vs Functional API in Simple Words

Introduction to Neural Network Architectures

When we talk about deep learning, we have to talk about layers. If you’re familiar with Artificial Neural Networks (ANNs), you know they follow this basic structure:

Inputs → Hidden Layers → Outputs
  • Input Layer: Defines the shape/number of neurons (features)
  • Hidden Layers: Where the magic happens (learning patterns)
  • Output Layer: Final prediction

Now, to build these neural networks, we have two main approaches (plus a third advanced method called Model Subclassing, but we’ll focus on the two most common ones):

  1. Sequential API (Simple, linear flow)
  2. Functional API (Flexible, complex architectures)

Both are implemented using Keras, a high-level API of TensorFlow.


1. Sequential API: The Straightforward Approach

What is Sequential API?

The Sequential API is the simplest way to build a neural network. As the name suggests, it works layer-by-layer in sequence.

✅ Best for: Beginners & simple models (e.g., MNIST digit classification, basic regression).

Key Features

✔ Single Input & Single Output
✔ No Branching (All layers run one after another)
✔ No Need for Standalone Input Layer (Shape is defined in the first hidden layer)

Pros & Cons

ProsCons
Easy to useLimited flexibility
Good for beginnersNo multiple inputs/outputs
Clean & readable codeNo layer sharing
Fast prototypingNot suitable for complex models

Example Code (Sequential API)

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# Define a Sequential model
model = Sequential([
    Dense(64, activation='relu', input_shape=(10,)),  # Input layer (10 features)
    Dense(32, activation='relu'),  # Hidden layer
    Dense(1, activation='sigmoid')  # Output layer (Binary classification)
])

model.summary()  # View model architecture

Explanation:

  1. Sequential() → Initializes an empty model.
  2. Dense() → Adds a fully connected layer.
    • 64 → Number of neurons
    • activation='relu' → Activation function
    • input_shape=(10,) → Defines input dimensions (10 features)
  3. model.summary() → Prints model structure.

2. Functional API: The Flexible Approach

What is Functional API?

The Functional API is more powerful and allows for complex architectures.

✅ Best for:

  • Multi-input/multi-output models
  • Shared layers
  • Residual connections (like in ResNet)
  • Custom branching

Key Features

✔ Multiple Inputs & Outputs
✔ Layer Reusability (Same layer can be used in different branches)
✔ Supports Complex Models (CNNs, RNNs, Transformers)

Pros & Cons

ProsCons
Highly flexibleSlightly more complex
Supports branchingRequires deeper understanding
Allows shared layersMore verbose code
Used in advanced architecturesNot always needed for simple tasks

Example Code (Functional API)

import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, concatenate
from tensorflow.keras.models import Model

# Define input layer
input_layer = Input(shape=(10,))  

# First branch
hidden1 = Dense(64, activation='relu')(input_layer)  
hidden2 = Dense(32, activation='relu')(hidden1)  

# Second branch (parallel processing)
hidden3 = Dense(32, activation='tanh')(input_layer)  

# Merge branches
merged = concatenate([hidden2, hidden3])  

# Output layer
output = Dense(1, activation='sigmoid')(merged)  

# Build model
model = Model(inputs=input_layer, outputs=output)
model.summary()

Explanation:

  1. Input() → Explicitly defines input shape.
  2. Branching → Two paths (hidden2 and hidden3) process data differently.
  3. concatenate() → Merges branches before final output.
  4. Model() → Defines inputs & outputs (unlike Sequential).

Comparison Table: Sequential vs Functional API

FeatureSequential APIFunctional API
Ease of Use⭐⭐⭐⭐⭐ (Easy)⭐⭐⭐ (Moderate)
Flexibility⭐ (Limited)⭐⭐⭐⭐⭐ (High)
Multi-Input/Output❌ No✅ Yes
Layer Sharing❌ No✅ Yes
Branching❌ No✅ Yes
Best ForBeginners, simple modelsComplex architectures

When to Use Which?

Use Sequential API If:

✔ You’re a beginner
✔ Your model has a simple linear flow
✔ You don’t need multiple inputs/outputs
✔ You want quick prototyping

Use Functional API If:

✔ You need multiple inputs/outputs (e.g., multi-modal data)
✔ You want branching or residual connections
✔ You’re building CNNs, GANs, or Transformers
✔ You need layer sharing


Conclusion

  • Sequential API → Simple, fast, great for beginners.
  • Functional API → Powerful, flexible, essential for complex models.

Final Advice:

  • Start with Sequential API for basic tasks.
  • Switch to Functional API when you need more control.

🚀 Now, try building both and see the difference yourself!

Leave a Comment